Y=-16x^2+152

Simple and best practice solution for Y=-16x^2+152 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16x^2+152 equation:



=-16Y^2+152
We move all terms to the left:
-(-16Y^2+152)=0
We get rid of parentheses
16Y^2-152=0
a = 16; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·16·(-152)
Δ = 9728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9728}=\sqrt{256*38}=\sqrt{256}*\sqrt{38}=16\sqrt{38}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{38}}{2*16}=\frac{0-16\sqrt{38}}{32} =-\frac{16\sqrt{38}}{32} =-\frac{\sqrt{38}}{2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{38}}{2*16}=\frac{0+16\sqrt{38}}{32} =\frac{16\sqrt{38}}{32} =\frac{\sqrt{38}}{2} $

See similar equations:

| 4x-9=2(5+2x) | | 4x-9=2(52x) | | x^3+7x^2+15x+8=0 | | -2(x+2)=4x-16 | | x^2+8x+2900=0 | | -n-4+0n=-6 | | 5(5x-5)=3(3x+3) | | 6=2+4n+0n | | (7x+17)=(13x-13) | | 3(2b+6)-4b=-8 | | (6x+10)=(5x-28) | | (6x+10)=5x-28) | | (11x+10)=(10x-40 | | 8+3(5u-7)=-2(6u-1)+9u | | 2=0n+2n-4 | | -6(3y-4)+4y=2(y+6) | | -24=3n-3+4n | | 3n+1+3n=-23 | | v^2+18v=43 | | 0n-2-3n=-5 | | 5(2 | | -19=1+n+4n | | 6.3^2+x^2=15.4^2 | | 7n-23=67 | | 4(z+5)+6(2z-3)=12 | | 2 | | 2 | | 2x*x=780 | | 7=3(w+1)-2 | | -7+m=33 | | x12x=3 | | 64+11x=18+12x |

Equations solver categories